



Pergamon

Tetrahedron Letters 41 (2000) 247–249

TETRAHEDRON  
LETTERS

## Facile synthesis of enantiopure (*R*)-malates

Doo Ok Jang \* and Seong Ho Song

Department of Chemistry, Yonsei University, Wonju 220-710, South Korea

Received 27 September 1999; revised 25 October 1999; accepted 29 October 1999

---

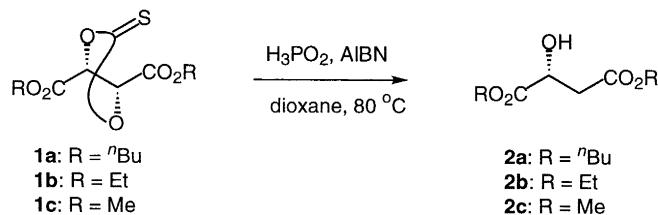
### Abstract

(*R*)-Malates were synthesized from cyclic thionocarbonates of (*R,R*)-tartrates by reacting with hypophosphorous acid in high isolated yields. © 1999 Elsevier Science Ltd. All rights reserved.

---

Enantiomerically pure malic acids and its derivatives are useful chiral building blocks in the synthesis of natural products.<sup>1</sup> The unnatural (*R*)-malates have been known to be more difficult to obtain, whereas the naturally occurred (*S*)-malates are readily available. Previous methods for preparing the enantiomerically pure (*R*)-malates include multistep synthesis<sup>2</sup> from chiral starting material and manipulation of (*R,R*)-tartrates.<sup>3</sup> Although the methods that convert readily available (*R,R*)-tartrates into (*R*)-malates are the most effective, they usually involve either multistep synthesis or expensive and toxic chemicals. We wish to report here a practical and convenient process for the conversion of (*R,R*)-tartrates into (*R*)-malates via their cyclic thionocarbonate derivatives using an ecologically compatible hypophosphorous acid.<sup>4</sup>

(*R,R*)-Tartrates were transformed into their cyclic thionocarbonates by reacting with thiocarbonyldiimidazole or thiophosgene in 75–85% yields.<sup>3e,5</sup> The cyclic thionocarbonate of dibutyl (*R,R*)-tartrate (**1a**) was treated with 5 equiv. of hypophosphorous acid and 5.5 equiv. of triethylamine in 1,4-dioxane at 80°C in the presence of azobisisobutyronitrile (AIBN) for 30 min to afford dibutyl (*R*)-malate (**2a**) in 35% yield along with unpredictable products (Table 1, entry 1).<sup>6</sup> We thought that triethylamine might play a role in decreasing the yield of (*R*)-malate. Several controlled reactions were carried out without triethylamine. Without the base, cyclic thionocarbonate of dibutyl (*R,R*)-tartrate (**1a**) could be converted into dibutyl (*R*)-malate (**2a**) in 91% yield within 1 h (entry 2). The reaction yielded the best result with 3.5 equiv. of hypophosphorous acid in the presence of AIBN at 80°C (entry 3). Diethyl and dimethyl (*R,R*)-tartrates (**1b** and **1c**) were transformed into the corresponding (*R*)-malates (**2b** and **2c**) under the conditions. The optical purity of the products was retained as shown in the <sup>1</sup>H NMR analysis with a chemical shift reagent, europium tris[3-(heptafluoropropylhydroxymethylene)-(+)-camphorate].<sup>7</sup> It is noteworthy that the high purity of products could be obtained after washing the reaction mixture with aqueous NaHCO<sub>3</sub>, based on the analysis of the <sup>1</sup>H NMR and GC analysis (Scheme 1).


---

\* Corresponding author.

Table 1  
Reaction of cyclic thionocarbonates of (*R, R*)-tartrates with H<sub>3</sub>PO<sub>2</sub> in 1,4-dioxane at 80°C<sup>a</sup>

| Entry | Substrate | H <sub>3</sub> PO <sub>2</sub> (equiv.) | Time (h) | Product   | Yield (%) <sup>c</sup> |
|-------|-----------|-----------------------------------------|----------|-----------|------------------------|
| 1     | <b>1a</b> | 5.0 <sup>b</sup>                        | 0.5      | <b>2a</b> | 35                     |
| 2     | <b>1a</b> | 5.0                                     | 0.5      | <b>2a</b> | 91                     |
| 3     | <b>1a</b> | 3.5                                     | 0.5      | <b>2a</b> | 92                     |
| 4     | <b>1a</b> | 2.5                                     | 1.5      | <b>2a</b> | 84                     |
| 5     | <b>1a</b> | 1.5                                     | 2.0      | <b>2a</b> | 83                     |
| 6     | <b>1b</b> | 3.5                                     | 3.0      | <b>2b</b> | 75                     |
| 7     | <b>1c</b> | 3.5                                     | 1.0      | <b>2c</b> | 70                     |

<sup>a</sup>In the presence of AIBN (0.2 equiv.). <sup>b</sup>In the presence of Et<sub>3</sub>N (5.5 equiv.). <sup>c</sup>Isolated yield.



Scheme 1.

In conclusion, the practical process of preparing the enantiomerically pure (*R*)-malates from (*R, R*)-tartrates has been developed. The advantages of the reaction are the usage of inexpensive reagents, easy work-up process capable of carrying out on a large scale, and ready availability of enantiomerically pure starting materials.

Typical procedure: A solution of the cyclic thionocarbonate of dibutyl (*R, R*)-tartrate (110 mg, 0.36 mmol), hypophosphorous acid (50% aqueous solution, 0.13 mL, 1.26 mmol), and AIBN (12 mg, 0.072 mmol) in 1,4-dioxane (3 mL) under argon was heated at 80°C for 30 min. The reaction mixture was diluted with CH<sub>2</sub>Cl<sub>2</sub> and washed with satd aqueous NaHCO<sub>3</sub>. The organic layer was dried over anhydrous MgSO<sub>4</sub>. After evaporation of the solvent, the residue was separated by column chromatography on silica gel (eluent: hexanes/EtOAc, 8:2) to afford 82 mg (92%).

## Acknowledgements

This research was supported by the Maeji Institute of Academic Research.

## References

1. (a) Masamune, S.; Ma, P.; Okumoto, H.; Ellingboe, J. W.; Ito, Y. *J. Org. Chem.* **1984**, *49*, 2834. (b) Hanessian, S.; Ugolini, A.; Therien, M. *J. Org. Chem.* **1983**, *48*, 4427. (c) Bellamy, F. D.; Bondoux, M.; Dodey, P. *Tetrahedron Lett.* **1990**, *31*, 7323. (d) Keck, G. E.; Andrus, M. B.; Romer, D. R. *J. Org. Chem.* **1991**, *56*, 417. (e) Ohta, T.; Shiokawa, S.; Sakamoto, R.; Nozoe, S. *Tetrahedron Lett.* **1990**, *31*, 7329.

2. (a) Henrot, S.; Larcheveque, M.; Petit, Y. *Synth. Commun.* **1986**, *16*, 183. (b) Wynberg, H.; Staring, G. J. *J. Am. Chem. Soc.* **1982**, *104*, 166.
3. (a) Rho, H. S. *Synth. Commun.* **1998**, *28*, 843. (b) Kang, S. K.; Park, D. C.; Rho, H. S.; Yoon, S. H.; Shin, J. S. *J. Chem. Soc., Perkin Trans. 1* **1994**, 3513. (c) Gao, Y.; Zepp, C. M. *Tetrahedron Lett.* **1991**, *32*, 3155. (d) Kusuda, K.; Inanaga, J.; Yamaguchi, M. *Tetrahedron Lett.* **1989**, *30*, 2945. (e) Alpegiani, M.; Hanessian, S. *J. Org. Chem.* **1987**, *52*, 278.
4. Hypophosphorous acid is commercially available from Aldrich. For recent examples using  $H_3PO_2$ , see: (a) Barton, D. H. R.; Jang, D. O.; Jaszberenyi, J. Cs. *Tetrahedron Lett.* **1992**, *33*, 5709. (b) Barton, D. H. R.; Jang, D. O.; Jaszberenyi, J. Cs. *J. Org. Chem.* **1993**, *58*, 6838. (c) Jang, D. O. *Tetrahedron Lett.* **1996**, *37*, 5367.
5. Corey, E. J.; Hopkins, P. B. *Tetrahedron Lett.* **1982**, *23*, 1979.
6. Typical reaction conditions for deoxygenation of *S*-methyl xanthates with  $H_3PO_2$ , see Ref. 4b.
7. The specific rotation  $[\alpha]^{25}_D$  values: Compound **2a**: +10.5 (c 1.1, EtOH), **2b**: +11.2 (c 0.95, EtOH) (lit.<sup>3b</sup> +9.7 (c 1.25, EtOH), **2c**: +9.6 (c 2.3, EtOH) (lit.<sup>3e</sup> +9.5 (c 2.20, EtOH).